Sonic hedgehog regulates angiogenesis and myogenesis during post‐natal skeletal muscle regeneration
نویسندگان
چکیده
Sonic hedgehog (Shh) is a morphogen-regulating crucial epithelial-mesenchymal interactions during embryonic development, but its signalling pathway is considered generally silent in post-natal life. In this study, we demonstrate that Shh is de novo expressed after injury and during regeneration of the adult skeletal muscle. Shh expression is followed by significant up-regulation of its receptor and target gene Ptc1 in injured and regenerating muscles. The reactivation of the Shh signalling pathway has an important regulatory role on injury-induced angiogenesis, as inhibition of Shh function results in impaired up-regulation of prototypical angiogenic agents, such as vascular endothelial growth factor (VEGF) and stromal-derived factor (SDF)-1alpha, decreased muscle blood flow and reduced capillary density after injury. In addition, Shh reactivation plays a regulatory role on myogenesis, as its inhibition impairs the activation of the myogenic regulatory factors Myf-5 and MyoD, decreases the up-regulation of insulin-like growth factor (IGF)-1 and reduces the number of myogenic satellite cells at injured site. Finally, Shh inhibition results in muscle fibrosis, increased inflammatory reaction and compromised motor functional recovery after injury. These data demonstrate that the Shh pathway is functionally important for adult skeletal muscle regeneration and displays pleiotropic angiogenic and myogenic potentials in post-natal life. These findings might constitute the foundation for new therapeutic approaches for muscular diseases in humans.
منابع مشابه
Sonic hedgehog therapy in a mouse model of age-associated impairment of skeletal muscle regeneration.
Sonic hedgehog (Shh) is a morphogen regulating muscle development during embryogenesis. We have shown that the Shh pathway is postnatally recapitulated after injury and during regeneration of the adult skeletal muscle and regulates angiogenesis and myogenesis after muscle injury. Here, we demonstrate that in 18-month-old mice, there is a significant impairment of the upregulation of the Shh pat...
متن کامل01-P024 MicroRNA-206 regulates sonic hedgehog to control myogenesis
MicroRNAs (miRNAs) constitute of a class small non-coding RNAs that are involved in post-transcriptional gene regulation and have important regulatory roles in many fundamental biological processes. A small number of miRNAs predominantly expressed in muscle tissue have been found to play critical role in myogenesis, muscle growth, cardiac function and muscle hypertrophy. In the present study, t...
متن کاملGli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis.
RATIONALE A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration. OBJECTIVE The objective of this study was to identify the role of the hedgehog tr...
متن کامل01-P025 Post-transcriptional regulation of the HuB 3′UTR restricts expression of the HuB RNA-binding protein to the germ cells of zebrafish
MicroRNAs (miRNAs) constitute of a class small non-coding RNAs that are involved in post-transcriptional gene regulation and have important regulatory roles in many fundamental biological processes. A small number of miRNAs predominantly expressed in muscle tissue have been found to play critical role in myogenesis, muscle growth, cardiac function and muscle hypertrophy. In the present study, t...
متن کاملThe role of p53 in vivo during skeletal muscle post-natal development and regeneration: studies in p53 knockout mice.
The tumour suppressor gene p53 is recognised as a central regulator of the cell cycle and apoptosis. Post-natally, p53 mutations are associated with many cancers and mice lacking p53 are prone to spontaneous tumour formation. The present study examines skeletal muscle formation in post-natal mice lacking p53 using two different models of skeletal muscle regeneration. The level of endogenous myo...
متن کامل